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THE ANALYTICAL SOLUTION OF MEAN STREAM LINE METHOD
FOR TWO-DIMENSIONAL CASCADES -
SOME DEVELCPMENTS OF THE MEAN STREAM LINE METHOD I¥

Tsay Ruey-shen

(Tsing Hua University) ‘

' Abstract

This paper presents an improvement for
the mean~stream line method - using the
analytical solution. This method can drasti-
cally speed up the calculation and increase
the accuracy of the calculation. In this ‘
paper 1t presents simple equations and tables %
of functions for convenience of calculation
as well as examples of such calculation. In
order toc convenience the designing, this paper
also analyzes preliminarily as to how the
design parameters should be chosen in order
to obtain the desired turbine blade shape.
Using these methods and related information,
it can be done in one day tc complete the
design of a good turbine cascade circulated
by compressible flow (if only calculation of
incompressible flow is necessary, the speed
of computation can still be rised several
time). This paper finally also gives a
comparison between its results and the
experimental data and presents several possible
directions under which the mean-stream line
method can still be further developed.

SYMBOLS
A - trigonometric function of B8
a - width of the exit in the throat region in the duct

between blades

¥This paper has been presented in the First National Meeting
of Engineering Thermal Physics in August, 1965,
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trigonometric function of B, or the width of the
blade in the Z direction

arc length of the tbrlade

trigonometric function of B

isobaric specific heat of the gas

diameter of the inner circle of the duct between blades
trigonometric function of B8

trigoncometric function of B

enthalpy of the gas

blade surface or the arc length of the blade surface
Mach number of the gas flow

the distance in z-direction of the front fringe of the
blade at the point where the thickness in the y-direction
is the maximum

trigonometric function of g
pressure of the gas

an arbitrary physical quantity
gas constant

radius

trigonometric function of B8
cascade distance of blade cascade
gas flow velocity

coordinate direction (direction of the forehead line
of the cascade)

coordinate direction (axial direction of the turbine
machinery)

the absolute value of the distance in the y direction
between the mean-stream line and the surface of the
blade

an angle (starting from the z-coordinate and giving
counter clockwide)

the thickness of the blade in the y-direction at any
polnt

ratio of specific heats of gas
a constant

a constant; or the gas flow veloclty divided by the
critical velocity, i.e. velocity coefficient

a constant




p - the density of gas
w = a function

SUPERSCRIPTS

¥ - prelative value (divided by the inlet parameter)

' - derivative with respect to z

. = parameter at the rear rorehead line of the cascade
SUBSCRIPTS

o -~ stagnation value B

1,2,

3...n - different functions or constants
B ~ incompressible
e - far away downstream of the cascade
i - far away upstream of the cascade
m

- values on the mean-stream line or values on any
selected stream line

max - maximum value

P - inner arc of the blade
8 - back arc of the blade
y - y-direction component
z = 2z=direction component

60% - values on the stream line which has a 60% flow of that
at the back arc.

I. Mean-Stream Line Method

The condition of the gas flow circulation through the
planar cascade has an extremely large effect on the character-
istics of the turbine machinery. Therefore the calculation
of the condition of gas flow circulation for a glven planar
cascade (Forward Problem) and the designing of a planar cas-
cade which has good aerodynamic properties and satisfles cer-
tain actual requirements (reverse problem) are both important




T " -

[PUUUREU . . e

subjects to study for people working in the turbine machinery.
Up to date, there has been a lot of work done in this area.
There are various methods available. Among them there are
metheds which are based on rclatively rigorous theoretical
basis such as the conformal transformation method and so on.
However, the actual calculation load 1s relatively large.

In addition, it is very difficult to extend to compressible
flow and flow on an arbitrarily revolving surface. Pure
numerical solution has been used to consider the compressibility
of gases but the computational load is too large and it
casually requires an electronic computer to carry out the com-
putation. Therefore, on the other "...d, some relatively simple
approximation methods energed. For example, the mean-stream
line method[l] proposed by Professor Wu Ching-hua 1s one of
the effective methods to calculate planar cascades. It has a
relatively sophisticated theoretical basis to easily consider
the compressibilities of gases. Its computational load is not
large and results with sufficient accuracy can be obtained
rapidly. In addition, the thickness distribution required in
the design work can be easily found in order to assure the
strength, rigidity, and cooling requirements. Besldes, it

can be extended to the more generallzed conditions of flow on
an arbitrary revolving surface. Therefore, 1t has already
become a generally used computational method worldwide.

The essence of the mean stream line method is as follows:
If the shape of a stream line inside the duct of the cascade 1is
known (such as the mean stream line y = y(z) which equally
divides the flow on the duct) and themvariation pattern of any
gas flow parameter on it [such as (pw,),=w(z) ] (refer to
Figure 1), then it 1s possible to use the steady, isoentropic,
continuous, non-rotational, and ideal gas conditions in aero-
dynamics to derive the partial derivatives of various orders
of the gas parameters on that stream line with respect to the
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Figure 1. Design Variables 1in the
Mean Stream Line Method
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y direction. The actually applicable equatlons are as

follows[l]:

o= i1 Ty )
W,=Wsin8 (2)
W,=1"cos 3 ) (3)
L) =[F-tanp -1 4O o, (4)
L) = [F 5 25 tang ] cos'B,, (s)
(& 5= e (). €8

) (e 35 LG L 2%
+tanp -5 (5 )] cos*3,, (1)
L )= _9',*__ -2 tan ) (7a)

(+ ). =5 (%) - (,_”(,,,j_;—rn;) [, 255"

B () < () &)
4(7)=4m+0—wa( ) o-mv §;0m+(tﬁﬁi(gz)m+nw (9)

The q in equation (9) can represent any one of the gas
flow parameters. Inthe actual calculations ©¢f the turbine
cascade, only the first three terms of the Taylor series
expansion will provide sufficient accuracy.

In order to solve the "Forward Problem", at the beginning
of the calculation it is necessary to estimate Yy = v(z)
and (pW,)e =@{(z)o under the given duct condition.

&&




In Reference [1], it was believed that the center 1line
of the duct and be used as the first approximation of the
mean-stream line (the amount of flow equals on both sides of
this 1inc) and the variation of the parameter P, along the
mean stream line 1is inversely proporticnal to the y-direction
width of the duct (i.e.(PW.)a=—2%). On this basis of
these a preliminary calculation can be carried out. As for

whether its results are correct, we can integrate from z's on
the mean stream line along the y direction on both sides to
determine whether the obtalned flow agrees with the incoming
flow. Reference [1] also gave a modification method when
disagreement was found. Later, in Reference [3], it presented
a method to more accurately estimate the position of the mean
streamline.

For the "Reverse Problem", if Ya=¥(2z) and (PH ) p=w(z)
are given, then all the flow parameters in the flow field can
of course be obtained. In the meantime, the boundary of the
duct (blade) can also be defined based on the concept of
equilibrium flow. Naturally, to obtain good cascades, '-=13¥(=z)
and (Pl",),=w{z) also must have certain limitations and matching
relations. Reference [3] introduced a method using past exper-
lence to plot the shape of the blade and to obtain the
approximate variation regularity between the mean stream 1line
and the duct width. Afterwards, the preliminary calculation
is carried out followed by gradual improvements.

II. One Way to Increase the Computational
Speed and Accuracy

In the method of using existing mean stream line to
design cascades (the Reverse Problem), as described above,
because usually the mean stream line and the data of one para-
meter at several points on it are given {in the past PI,)

%




was obtainoed frem concideration of the blade thickness),
therefore the numerical differentiati-n method is used to
calculate the derivatives ‘j? alons the stream line in
equations (4) ~ (7a). This part of the calculation is more
time consuning and is diffTicult to obtain very high accuracy.
It is also casier to make mistakes. EBecause of the use of
numerical differentiaticn equations, the error of one mis-
takenly calculated point will affect the accuracy of the
numerical values thereafter. References [1] ~ [3] suggested
the plotting of curves in a table after these derivatives are
calculated in order to discover mistakes early and to "polish"
the data.

The mean stream line method does not require many com-
putational terms which is one of its advantages. But at least
4 times of numerical differentiation must be calculated. If
the five point differentiation equation[lj is used, then the
computation of each pecint involves 5 multiplications, 1 addi-
tion, and 1 division. 1In addition, in order to obtain a
certain significant figures with accuracy, it is necessary to
use more significant figures in the beginning of the calcula-
tion. This then becomes a barrier which may not necessarily
exist against increasing the computational speed. Besides, the
polishing in the numerical calculation, although is an effec-
tive method, yet it does not absolutely assure the accuracy
of the calculation. Therefore, it is natural to have the
following thoughts: Is it possible to change the design of
the mean stream line method from variation of parameters to
the analytical form? This allows the use of the analytical
method in the differentiations and the rearrangement afterwards
so that the complicated calculations described above can be
eliminated. By doing so it 1s not necessary to gradually carry
out calculations of numerical differentiation to reduce the
possibllity of computational error. It is also not necessary

g
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to publish the computational results and can obtain the deri-
vatives to an arbitrary degrec of accuracy desired. For

the logical point of view, this method has no difficulty in
the "Reverse Problem". As long as we can find the proper mean
stream line and the functional relationship between the flow
parameter on it and the z-coordinate. These are not difficult
to obtain from the existing cascade data and the computational
experience acquired later. Of course, if the equations
expressed by the analytical form are too complicated then its
meaning is no longer significant. But from the follcwing
section, it can be seen that, to the contrary, the use of
analytical relations can simplify the equation itself which is
more advantageous in computation. Let us elaborate this analy-
tical method in the following.

III. Analytical Solution of the Reverse Problenm
1. Incompressible Flow

Let us first take a look at the special solution to the
incompressible flow. At this time equations (1), (4), (5),
(7), and (7a) become the following, respectively. (The para-
meters in this section and in Table 2 in the Appendix are
with respect to the mean stream line. For convenience, the
subscript is omitted with exception of those specified in
the equations):

p:=(—",’7) =1 (10

<5, ( 2-tanB -7, coo'p (1)
aw dW le . (2)
5, [tanﬁ o ) ()], o0 (13)
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(G ) =0 () -5 tan 8, (1)

If we choose the analytical equaticn of the mecan strean
line to be vy =y(z) | 1In additicn, we also choose W=W(z)
as the varying parameter of design instead of W,=w(z).
This is apparently possible 1n solving the reverse problem and
offers convenience in computation. It makes easier to control
the surface velocity distribution of the obtained blade shape.
Actually after PiV,=w(=z) and Y=v(z) are given, then in
principle it is completely possible to transform into ¥W-W(z).
Thus using eguations (2), (3), and the above four equations
as well as tan B=»"(z) , it is possible to derive the eguation
of the analytical solution. However, the operation is rather
complicated and the resulted eguation is more difficult to
use. Therefore, it is better to obtain B =tan™*{y’(z) J=8(=)
from y = y(z) as the varying parameter and then differentiate
Wy and wz with respect to z to carry out the derivation opera-
tion. It 1is then possible to get the simple equations of the
partial derivatives of wy and wZ in the y direction.

aw’ R ’

(55 )s =Bowd —Bow” (15)
aw, Q72 . rar

(—;;:—),=Av"'ﬁ "+ B WB + A, WS —B,-W" (16)

an’: -4 ’,
(55), =Biwb +B,w an

a:W’ -ar L4 rpr »
—5rl=&4W’+&%ﬁ+ﬁm'ﬁ+&W (18)
where Al, A2, Bl ~5B6 are the simple trigonometric functions of

8. For example:

A,=cos’BsinB (12 cos’B~ 5) (19)




Ay=—co3B (16 cns'B—1Lcos’p+ 1) (20)
B,=cosB (2cosB— 1) (21) o '
B,= 2 cos’f sin § ' (22) ‘

The remaining equations of B can be found in Table 3 in the
Appendix.

But in the actual application, 1t is more convenient to
calculate after the values of the partial derivatives of w2
and W are obtained. It is because that the former can be used
to determine the boundaries of the duct and the latter can be
used to directly obtain the velocity distribution with com-
bining the two velocity components to get the velocity. The
partial derivative value of W can be obtained as follows:

Since
Wi=wi+u?

Let us carry out first order and second order partial differ-
entiations on both sides of the above equation. After
rearrangement and simplification we get

W _ aw, v

oy = oy sinfl + af“”sﬁ (23)
_a_:.li__ _a:ll' a IV alV aw 3 a"
oy T~ gy .mB + % CObﬁ [ _"_ ) ] (24)

then substituting equations (15) ~ (18) into the two above
equations, we get
5 h =B+ pav (25)

W . . ' ) ;
Kz )l =B, wp’ + 2B, WP +B,,-Ww'p’ +B,,W" + B,y “l’l/ (26)

where B7 ~,813 are all simple trigonometric functions of B.
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The actual equations can be found in Table 3 in the Appendix.

From these 1t 1is found that for incompressible flow the
first order and second order partial derivatives in the y
direction on the mean stream line are simple linecar function
of the combination of products of W, B8 and their partial
derivatives with respect to z. Because the coefficients in
front of each term are all known simple trigonometric functions
of B, table (see Table 3 in the Appendix) can be prepared in
advance for future use. After doing so 1t is very quick to
calculate the partial derivatives in the y-directions on the
mean stream line. For incompressible flow, after the familiar-
ization of the process, it takes about or less than two hours
to calculate over ten points of a duct.

In the next step of determining the position of the
boundary of the duct, it is possible to use the partial deri-
vative values everywhere on the mean stream line and the con-
tinuity equation to derive a third order algebraic equation to
replace the numerical integration method used in the past.

Since
Ay,

W= [ w,4(a5)
0

and
all
w,= W,‘_-l-( )A,. ; aaz )Ay’
We can get

Wanlyp+ _“( o ) Avi+ (5 =) Av=—1u,

o (27)
Similarly
W,,.Ay‘_+ W, ) Ay 7+_( 96;': ) Ays—_-_—"r"_g (28)

¥The W_ 1n these two equations represents the axial velocity
compongnt in the direction of gas flow at any point in the
duct. It is different from the axial velocity component on the
mean stream line in other places of this section.
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where absolute values are used for Ay, and ;"3/
Of course, it is not a simple matter to rigorously solve
the third order algebraic equatlion (although it can be
%
obtained ccmpletely). But its approximate sclution with

a certaln accuracy can be easily obtained graphically or using
the interpolation method. Based on the experience in calcula-

tion, for blade of ordinary size (arc length in the order of
several tens mm), it is only necessary to substitute the two
integer value in millimeters of Ay near the solution (the
approximate value can be estimated easily from the pcssible
shape of the blade) into equation (27) or (28) and then use
the linear interpolation method to obtain the solution which
is pretty accurate. After the boundary of the duct 1is known,
we can use equation (9) and wm as well as its partial deriva-
tive value in the y-direction to obtain the velocity distri-
bution on the surface of the blade.

2. Compressible Flow

For compressible flow, it is also completely possible
to use a similar method as described above to obtain the
corresponding equations. As discussed before, at this time
we should find the partial derivatives of P, and W In the
y~direction and not those of wy and wZ in order to make
further calculation more convenient. Equations (23) and (24)
are still valid at this time. We also noticed that:

IPWy) aW
—y T=P I +W,— d,
22 (PWV,) ap_ oW p
oy — P~w’ +2-5,- Sy tWa-

2 _2 . 4]
M=523 5=

¥¥ Recently, in Reference [7], 1t presented a method using
the concept of using the flow function to directly calculate
Ayp and Ays.
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Then from equations (1) ~ (8) after complicated operation, we
can obtain the tollowing results:

1 (PIV,) Jait, A oo
- Ty = (), MBS e B”) (29)
1 9Py (oW, ) . .
p dy’ Tyt /s

3
+ [ By WB 3B, WB” + BB’ + B W 4By

+M[(2= B B+ (1= 30) B W' B ~ Bo " + 2 (B, - v-8,))

w
— M*Y+Bjo— ? 20)
W ¢ aw
oy =\ oy ). (31)
3w 1% , . wr?
9y3 —\ay3 )n + M (=B W B’ +BW I+ MY Byye (32)

where every B is also a trigonometric function of B. The
actual equations can be found in Table 3 in the Arpendix.

From here it can be found that, for compressible flow
although there are so many terms yet it is also the addition
of some simple products. The coefficients of each term can be
tabulated in advance (see Table 3 in the Appendix) for use
later. Therefore, the computation is also relatively quick
and it takes a day or so to complete. The determination of
the position of the boundary of the duct at this time can also
use the third order algebraic equation and not the numerical
integral method:

1r a(pW,) 2, L a3cpw,

() byt o[22 ] vy + 3 [ 250 an=Lcow,). (33)
1 6(0" +) + l T (pw’,

(Pw,). 8y, ~ 3 [ 255 ] Ari+ ([ 2000 avi=L(ow, e (34)

When y=vy(2) 1is given, the values of B, B8' and B" can
be obtained from the following equations:

B =tan~'(y'(z)) (35)

4 :
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$'=~T%77=Wam$=8q' (36)

B =cos’B(y"—y" -2 cos BsinP ) =B,y"—28,y"? (37)

Therefore, when some ordinary geometric curves are used as the
mean stream line, the equations of each y-direction derivative
can also be simplified using the above three equations. Table
2 in the Appendix lists the equations under the special con-
ditions that the mean stream lines are six different curves,
respectively. The ¢,~Cy, P,-P,, T,-7, and Hi—H; etc. in the
equations ae also known trigonometric functigns of 8. The
expressions and values can be looked up in Table 3.

IV. Application Examples

In this section, we are using a high subsonic pulsed cas-
cade as an example whose design requires relatively compli-
cated computations. There are many terms to be omitted to
simplify the calculation.

The original data of the design are as follows:

Gas Paramaters before the Cascade:

stagnation temperature  To=324'K ,
stagnation density Pou=1.565 kg/m3,
velocity W.=180 n/sec

angle fi=31.2"

Gas Parameters behind the Cascade:

velocity W.=24 m/sec
angle B.=-60" ;

The working medium 1is an ideal gas with Y=1,4 .




The geometric shape of the mean stream line selected in
the design: when B.>0 , 1t 1s a circle with radius r = 50
mm. VWhen B8.<0 , 1t 1s a suspended chain wave Y =%cosh (0z)+ 2

(mm) where W =-30.77 mm, 0=0.0255 1/mm, and A =g0.7; mm.

When the combination of the two types of geometric curves
1s used as the mean stream line, it 1is necessary to make sure
that the values of Y. 8. B, and B. are the same on both
sides of the junction of the two types of curves. Only by
doing so, the results obtained from the above equations will
be continuous (when only the first three terms of the Taylor
series are used). For ordinary simple geometric curves, this
requirement can not be met at any point.

The front and back forehead lines of the cascade are
selected right at the places where the Bm of the mean stream
line 1s equal to the given Bi and Be' For preliminary design,
this selection is the only natural choice. But from the dis-

cussion in the following section, we can see that this choice
should be recommended to be used in general.

The velocity distribution of the mean stream line in this
example is selected as follows: When Ba=0 | use W = constant
= 200 m/sec. When B8.<0 , then let the velocity increase
following a cosine curve to the exit value (270 m/sec), i.e.

'W=235-35c05(-x) where zo 1s the value of z coordinate of
the back foreward line of the cascade. Although at B=0 W
and W' are continuous, W" 1s not continuous. The continuities
of W, W', and W" all should be required at the junction point
of various velocity variations. But it is generally not easy
to achieve. Therefore, for the velocity distribution on the
mean stream line 1n this example, we can imagine the following: 1
When Ba>0 , use a constant. When B8,<10° , use the cosine
curve as discussed above. As for the segment in the middle,
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Table 1. Example of Computation
- P s _
2 _)’ // . - é ‘ J
b | 1 z (%) y (ZEX) W{x/%) WO/ X ""(22/1?_-:‘&1’:3)| Vi (Hl5)
: -
n Rx| -rsinp rcos B 200.0 0.000 0.0000 RAR(s) |
!
' ‘:
=  -32.14 38.30 200.0 0.000 0.0000 13.2
! - {
|
30° f ~25.00 43.30 200.¢ 0.000 0.0000 7z
| |
20 —17.10 46.99 200.0 0.000 0.0000 187.9
| j
10° - 8.68 49.2¢ 200.0 0.000 0.0000 197.0 i
|
] H
0. 0.02 50.00 200.0 ~ 0.000 0.0000 200.0 |
-m'l 8.74 49.20 - 203.6 0.808 0.0860 200.2
-20° 17.60 |  46.84 213.9 1.457 0.0579 200.7
~30° 26.77 42.54 229.1 1.804 0.0161 108.2
-40° $6.47 35.70 246.6 1.728 -0.0317 188.9
-50° 47.30 24.80 262.5 1.129 ~0.0754 168.8
p=-s5 53.35 is.87 267.9 0.626 ~0.0903 153.6
12 13 ;
g o |BE2T3 | RE2m2 ot | asrainn . |
-~ e 235 SacOss—oz .sslsms—os 0.0959¢0s == 2 RAR(3)
/5 1é 17 /& 9 o) £f
n 8 208X y (k) w (/D) WICR/D-EX) W ORID-BXR3)| Wi (k/B)




Table 1 (continued)

T i NS Em)
AL oI, ®3 ( au'!_) -(/i 1 oew,) L5
A PIPe  IP(RJTIRY M oy /s P 0
' (BFFIX3 1) /DX | (/8%
e W] kA p . Haq | R%2mefr | Rivzmiofi
[y Poi(— --) p-¥, "
Vyer X0 sosiscse Po shE SR M2 T
74 Y, 14 29
7
0.608 0.855 1.339 205.0 0.571 —0.694 0.0716
0.606 0.855 1.339 232.0 0.571 —~2.000 —-1.021
0.606 0.633 1.339 251.5 0.571 —-3.064 —-1.913
0.608 0.855 1.339 ' 263.5 0.571 -3.759 -2;(94
0.606 0.855 1.339 267.8 0.571 -—4.000 ~2.696
1.330 266.0 0.582 —4.019 -2.616
1.308 262.7 0.613 —~3.876 -2.247
1.271 252.0 0.661 -3.201 —1.400
1.226 231.5 * 0.716 —1.864 -0.222
1.186 200.2 _0.768 —-0.274 0.766
1.171 179.8 0.783 +0.380 1.007
A | Ru2W|efr | Rk2Sof
w(f)| o
o UL & e ek
3/ 24 33
oW, iﬁi) 1 _9{any)
PERRIAY v or Ja | P oy
' (AR/I%2-8) | CR/BD-ER) | (K/B-EX)
4 25 2 277
[
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Table 1 (continued)
Lo, ) L | A N
T AN L O AR P e O k1B A
(R/BED) | (KB SRS
Rhami1tt REamng ' Ry2dsft Nk2Toff R¥%z23123
PO
& X B2 DI = Do B Moy
L 27 72 774 g4
/ L4
p=a0*| ~0.0800 —0.1116 ~3.06¢ 0.C608 0.0608
30° 0.0000 ~0.0645 -3.464 0.1000 0.1000
20° 0.0800 - 0.015% —3.759 0.1320 0.1320
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Table 1 (continued)

Ay, (mm) Ay, {mm) yp (mm) v, (mm) w, (m/secl w, (m/sec)
- ag | oqa
see eq./33) see e€q./3) Ym+ Byp Yn—48y, MAN(9)R I TMAN(9)5T 3 5]
22.17 23.08 61.08 15.22 | 146.1 286.9
20.83 18.36 64.13 v 24.94 149.6 280.6
19.55 16.21 66.54 30.78 - 151.8 278.3
18.82 15.17 58.06 34.07 153.0 277.3
18.61 14.88 ) 68.61 35.12 153.3 277.2
18.96 15.19 63.16 34.01 146.5 277.3
18.92 15.49 65.76 31.35 156.3 . 292.0
19.32 16.82 61.86 25.72 167.4 307.6
20.16 19.59 55.86 16.11 180.2 313.1
21.59 24.26 46.39 0.54 204.3 301.5
23.21 27.87 40.08 -11.00 218.6 288.7
—
. 5o s{
see €q.(33) Ssee eq.(34) Ym+Byp Y~ Ay, MAR(IIRTIIBIAALNR(9)8T3 51 .
Ay, (mm) Ay, (mm) o4 (mm) ¢ (mm) w, (m/sec) w,(m/sec)
. ‘ j
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Key to Table 1: 2. 1item, 3. z{(mm), 4. y(mm), 5. w(m/sec),
C. v soreamm), T, W' (M/sec mm?), 8, wz(m/sec), 9. egquation,

i -

10. see equation (3), 11. equation, 12. Based on 6th column
of tho 3Ird line in Table 2, 13. Based on 6th column of the
2rd 1'n~ in Table 2, 14, see equation (3), 15. item, 16. z (mm),
17. y (mm), 18. W(wm/sec), 19. W' (m/sec.mm), 20. W"(m/sec.mm?l),
21. W (m/see), 22. p (kg/m3), 23. (ko/m2 sec), 24. (m/sec.mm),
25. (M/sec.mm), 26, look up the table of aerodynamic functions
based on A, 27. look up the table of aerodynamic functions
based on A, 23. see the 2nd column in line 6 in Table 2, 29.
see the 2nd column in line 10 in Table 2, 30. look up the
table of aerodynamic functions based on A, 31. look up the
tab o of aercdynamic functions based on A, 32. see the 6th
column in line 6 in Table 2, 33. see the 6th column in 1line
10 in Table 2. 5
34, p(Ks/m), 35. pWz (Kg/mSsec), 36. (M/sec.mm), 37. Il/sec.mm)
38. svce col. 2 of line 7 in Table 2, 39. see col. 2 of line 11
in Table 2, 40. see col. 2 of line 8 in Table 2, 41. see col.
2 of line 9 in Table 2, 42. see col. 2 of line 12 in Table 2,
43. see col. 6 of line 7 in Table 2, 4L.see col. 6 of line 11
in Table 2, 45. see col. 6 of line 8 in Table 2, U6. see col.
6 of line 9 in Table 2, 47. see col. 6 of line 12 in Table 2
48. use the first 3 terms of equation (9), 49. use the first
3 terms of equation (9), 50. use the first 3 terms of equation
(9), 51. use the first 3 terms of equation (9)




a higher order of smooth curve is used as the transition.
Beeause the calculation points are always finite and discrete,
thoretore +the transition condition in btetween calculation
points can have some degree of arbitrariness.¥ By how much
the veleceitios at the entrance and exit on the mean strean
line are greater than the given velocity values in the front
and tho tzack of the cascade, by how much the value of PH. at
the cerresprondins point 1s greater than the Ziven values in
front and at the back of the cascade, also determines the
extent of dullness at the front fringe of the blade.[lj The
M number in this example is large, therefore, a sharper
design is used in order to avoid a partial supersonic effect
at the entrance.

The cascade distance in this example is 56.4 mm corre-
sponding to a cascade density of 1.8.

The computational results and procedures are shown in
Table 1 and Figures 2 and 3. From the calculated results, it
can be found that the coordinates of points on the surface

of the blade shape obtained using the analytical solution of
the mean stream line method are completely smooth. It is much
smoother than the solution obtained using the numerical method 1
(for example) refer to Reference [3]). This also indicates

that the accuracy of the solution is correspondingly higher.

Naturally, as described above, the speed of calculation is also

much faster.

For the design of a cascade, the blade profile obtained
in this example can be considered to be satisfactory: even
when the M number near the exit reaches 0.8, there is no
superscnic region in the entire duct. There is even sotle rar-
gin (the maximum M number on the back arc of the blade profile

¥ The discontinuity of w* at the junction still has some effect
on the smoothness of the calculated results. For example, the
variation of Ay in the region where g=s=~20° is not most ideal.

P
But the effect is small and the surface of the blade 1is still {

smooth.
2%
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is about 0.94). The velocity distribution on the entire blade
is also satisractory. The variation 1s uniform (W, ./ ~1.15
The compression gradient in the compression region which exists
in the eoxit scction of the back arc of an ordinary cascade

is not large. This indicates that the use of the method pre-
sented in this paper to design good planar cascades i1s com-
pletely possible.
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Figure 2. The schematic of the blade profile obtained from
the sample calculation B, - 51.2°, B8, = -60°, A, = 0.8.

Key: 1. mean line of the inner contact circle inside the
duct, 2. mean stream line I = y(z), 3. coordination points

obtained from calculation.
(i’-=1.83, -b”éi=o.zaz. ;=o.394)
As for the gas exit angle, we can use the following
empirical equation from the designed black profile to verify:

B, =cos™ -

f (38)

where a 1s the width at the throat of the ocutlet of the duct
. It is

(see Figure 2). The obtained result is Be=60.2"
basically consistent with the design requirement.
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FiFure 2, 7 1-.0s Atc-entphytion on the blade profile
obtatr.. ¢ < - 3. orrla calculation,
Key: 1. . . ¢, o. near tringe, 3. calculated point, U,
rear frii-c, ». luner arc, 6. stagnation point, 7. back arc,
V. The Selection of Variation
of the Design Variables
As decerit-a above, when using the mean stream line

method to dnsl.-n planar cascades, the design variables can

be chosen ar~ tho shape of the mean stream line and the velo-
city distribution on it (which includes the choices of the
points on that stream line that intersect with the front and
back forehecad lines and by how much the velocities at those
points are preater than the given velocity values in the front
and back of the cascade). Whether a good cascade can be
designed, the problem lies on the proper selection of these
design variables.

In order to acquire some preliminary experience in
designing, we have carried out many design calculations for
various types of blade profiles from different shapes of mean
stream lines and various velocity distributions on the mean
stream line. Because the solutions to the reverse problem of
the subsonic compressible flow is qualitatively very close to
that of the 1ncompressible flow, therefore during the calcula-
tions most of the time we use the incompressible flow in order




to obtaln more information for comparison more conveniently.
The 'vllowing 1s a presentation of preliminary reconmendations
on the selection ot design parameters based on the meaningful
results obtained from the information already in hand.

l. Pulsed Cascade

In the calculation, a compariscon is carried out on the
different veloclity distributions of pulsed blade family with a
circular mean stream line. The result obtained is: Regard-
less of whether the flow is compressible on lncompressible and
the distribution of velocity on the mean stream line (as long
as the variation is not too large), the trend of variation of
the velocity distribution on both sides of the duct (that is
on both sides of the blade) is similar to that of the velocity
distribution on the mean stream line. This results can be
qualitatively explained as: because the curvature of a circle
is uniform everywhere, therefore the difference of the velo-
city at the boundaries of the duct is not too different from
that on the mean stream line. The typical conditions can be
seen in Figures 4 and 5%.

From these two figures, it 1is easy to find out that the
aerodyhamic property is not good for the blade profile using
a circular arc as the entire mean stream line. Because that
the felocity distribution of the back arc is basically parallel
to that on the mean stream line, in the segment near the outlet

¥For the convenience of referring to the blade, the velocity
distribution 1s plotted along the z direction rather than
along the surface of the blade profile starting from Figure 4.
Thus the absolute value of the gradient of velocity appears
larger in the front and back fringes - especlally at the rear
fringe of the back arc. The actual velocity gradient la“n‘

is actually much small. Please notice this point when '
referring to all figures afterwards.

A
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on the back arc of the blade there must be violent compression
and gas separation caused by it. In the internal combustion
turbine laboratory of Tsung hua University, we have carried
out a low veloclty winch tunnel experiment on the planar cas-
case basically similar to the design shown in Fipure 4. The
result showed that there is a separation region at the exit

of the back arc of the blade. The flow field behind the cas-
cade 1s extremely inhomogeneocus.

When placing colored liquid in the separation region on
the back arc, we can use our naked eyes to observe the appear-
ance of whirlpools in this region. The liquid droplets adhere
to the blade in rotation and do not get blown away. These
indicate that the design using circular arc as the entire
mean stream line is not good.

But for ordinary pulsed cascades, the velocity variation
in front and behind the cascade is not large. It 1s naturally
proper to have less variation in the velocity distribution
on the mean stream line. There 1s not too much choice. The
velocity distribution on the back arc at this time is usually
desired to be flat and invariant at the beginning and then it
is followed by a segment of compression region with a velocity
gradient of a negative value which is not tooc large and
finally connects to the value of the exit velocity. There-
fore, for the beginning section of the duct in a pulsed cas-
cade, the use of a circular arc as the mean stream line and
taking the value of the velocity as a constant are recommended.
At thls time the rising section of the back arc has a basically
flat distribution of velocity. After that we can find some
curves as the mean stream line to satisfy the latter require-
ment discussed above.

In order to compare the effect of the shape of the mean



stream line more convenlently, the blade profiles of three
types of mean stream lines with constant velocity distribution
are shown in Fiprures {, 7, ani 8. The first halves (8.>0)
of the mean stream lines are all circular arcs and the rear
halves (Ba<0) are equi-angular variaticn curve in the z
direction (its analytical equation can be found in Table 2 of
the Appendix), suspended chain curve, and parabolic curve,
respectively. The junction point of various mean stream lines
is fixed at Ba=0 because only here it is convenient to make
the variations of ¥m. 8a. i~ and 3. continuous.

From these three figures, we can see that in the latter
half of the duct where 8,<0 , the effect of velocity distri-
bution on the back arc for the three mean stream lines is
different. When the mean stream line is a parabolic curve,
the velocity on the back arc initially drops rapidly and then
gradually flatens out. In the case of the suspended chain
curve, the situation is the uniformly compression along the
z direction. In the case of the equi-angular variation curve
in the z direction, the compression region 1s more concentrated
towards the rear (but as discussed above, the velocity distri-
bution is plotted in the z direction. When transformed into a
plot along the surface of the blade, due to the higher devia-
tion away from the axial direction in the rear of the blade,
the negative value of the velocity gradient is not too large).
If the circular arc 1s also used as the mean stream line in
the 3.<v region, then we will obtaln situations in which the
compression region is concentrated even more towards the rear.
The velocity value on the back arc is basically the constant.
Only in a very short section near the outlet violent compression
occurs. From these four conditions, it seems that 1t 1s related
to the variation of the B» value (the corresponding curvature)
on their mean stream lines after 3. O (refer to Table 2 in the
Appendix). The 8a of the equi-z-directional angular variation

%g_




curve in the z direction 1s a constant. The absolute value of
B.70% (vp—-Aees’B, for a suspended chain curve 1c beccning
smaller in the z-direction (the absolute value of the term
Vm=—-1) ) 1s getting larger, the term cos’f, 1s smetting
smaller, but the latter 1s the dominant factor), its initial
compression this arrives faster. The absclute value of
B2 M cos’ B, ror the parabolic curve becomes smaller even
faster, therecfcre, the compression begins even more rapidly.
On the contrary, the absolute value of ﬂ;=-%—--3£&1 for a
circular arc in the z direction is getting larger when B.<0
The onset of its compression then is slower than that of the
equi-z-directional angular variation curve., -The effect of
using other ordinary curve as the mean stream line can also

be evaluated approximately based on this technique.

From the above figures, it can be found that for pulsed
cascades we can recommend a circle when 8,<0 and an egui-z-
directional angular variation curve or a suspended chain curve
when B,<o as the mean stream line. The choice between the two
latter ones should take the application condition of the cascade
into consideration. If the estimation shows that the velocity
distribution of the former will not cause separation, then it
is better to use the equi-z-directional angular variation
curve because the density can be reduced for the same cascade
distance, the width of the blade can also be decreased, and the
frictional loss of flow can be minimized.

As discussed above, for pulsed cascades, there is not too
much choice in the velocity distribution or the mean stream
line. If the M number is not too large, we can directly choose
the velocity distribution on the mean stream line as a straight
line or as a constant. If the maximum velocity is to be
reduced and the compression gradient is to be minimized to the
extent posslible, then we can first choose the lowest possible
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Fig. 4. The blade profile and veloclty distribution
when the mean stream line 1is a circle.
Womer

(My=0, B;=50°, B,=—60",

[
=1.45, ——’;—sn.m, T =0.32, -

=0.47)
Key: 1. W m/sec, 2. center line of the inner contact circle

of the duct, 3. mean stream line.

constant as the velocity on the mean stream line and then

use a certaln curve to connect to the value at the rear
fringe (its selection will be shown later). For example, it
has been done this way in the above example. Another example
is shown in Figure 9. The given parameters, the shape of the
mean stream line, and the selection of the cascade distance

of thls blade profile are the same as those in Figure 7. Only
the velocity distribution on the mean stream line is different.

Comparing these two examples, we can see the effect of this
change.
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Fig. 5. The blade profile and velocity distribution
when the mean stream line is a circle.

. . Won b 6 -
(M,=0.2, B,=50", B,=-55.2°, ——,L." =1.59, ——=1.53, —p—=0.255, 5~
=0.50)

Key: 5. W m/sec, 6. center line of the inner contact
circle of the duct, 7. mean stream line.

2. Reversed Cascade

There is little experience in using the mean stream line
method to design the reversed blade profiles[3]. Since the
mean stream line and the velocity distribution on it are
simultaneously affecting it more significantly, it is then
more difficult to analyze the effects. But we can be sure that
the qualitative effect of the mean stream line as discussed
above is still approximately cowrect. For the comparison of
the effect of velocity distribution on the mean stream line
at thls time, Figures 10, 11, and 12 show the results of three
blade profile designs with different velocity distributions
on the mean stream line. (They are a straight line Wa=l"+1,z,,
a second order parabolic curve Wa= W,-mz+n2 | and an
eights order polynomial 1w, =i,+nz-n2), respectively). but
the other paramecters remaincd the same., It 1s apparant i

that, for the reversed cascade, the veloclty gradient on the

30
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Figure 6. The blade pro-
file and velocity distri-
bution when the mean stream
line is a circle B.>0)
and an equi-z-directional
angular variation curve
(Bl 0)

Key: 1. W m/sec,

2. center line of the
inner contact circle of
the duct, 3. mean stream
line. .

. Wona
(M=~ 0, Bi=30°, B,= 60", —==
6\‘.
B

=0.281,

-1.43. -':L-l-‘sv

—;— =0.392)

Figure 7. The blade profile and
velocity distribution when the
mean stream line is a circle i(B.>0)
and a suspended chain curve B.<o)
Key: 5. W m/sec, 6. center line
of the inner contact circle of the
duct, / mean stream line.

mean stream line 1s generally positive. From these three
figures and some computational results, we found that: 1in
order to make the compression small in the most troublesome
area near the rear fringe of the back arc, we should choose
the smallest wm' value at that place possible, wm" is a
negative number (wm may be relatively larger at this time)
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as chown in Pizures 3 and 12. We should not ucse the cmallecst
wm possible In frent of the rear fringe as we might have
Imagined. It would rapidly become larger as shown in Figure
11. Besldes, we must also realize that, at the front and rear
fringes, in addition to wm the values of wm' are also influ-
encing the thickness of the front and rear frinces signifi-
cantly. The front (rear) fringe has a larger W ' than it
makes the from (rear) fringe thicker. This can be found by
comparing the blade profiles in Figures 10a-12.

wl‘/’ {
28
'Sk LSOO
i e
W
- s \\\\‘\s
U B el .
0 Wa -_:-—-—'ﬁ wy
’4"—‘ -
m P
!
Y -
P ki 2
\—"'-J i\ 7
’— - / N z
“ran/3 R
/ \Ir
\Y

. W,m
(m-o.m=w,m=—mn—j[‘ﬂjb—i

t
6'“
=2.13, —=0.26, —7- =0.306)

Figure 8. The blade profile and the velaritv distribution of a
mean stream line which is a circle when (B8.>0) and a parabolic
curve when (g <4y. Key: 1. W m/sec, 2. ¢eénter line of the
inner contact circle of the duct, 3.mean stream line.
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Just as pointed out in Reference [3], in the design of
reversed blade profile, it 1s more appropriate to use the
stream line which has 60% of the flow away from the back arc
as the mean strecam line. VWhen the analytical riethod 1s used
to carry out the design work, the same experience has been
verified. 1In addition to the fact that the mean stream line
is farther away from the inner arc as pointed out in Reference
(3], this is also due to the better convergence towards the
back arc direction when using Taylor series to expand PIW, .

Therefore, in the design of blade profiles of the reversed
type, it is recommended to use the 60% stream line of an
equi-z-directional angular variation curve or a suspended
chain curve. The velocity distribution on the stream line
should be the type which increases uniformly and becomes flat
at the rear fringe for better results. Another example of
blade profile with this type of design can be seen in Figure
13.

After the mean stream line is selected, as described
above, there 1s still this problem left to determine the posi-
tions of the front and rear fringes. The difficulty to
preclsely obtain the shapes of the front and rear fringes to
satisfy the requirements of entrance and exit angles of the
gas 1s one disadvantage of the mean stream line method. But
based on the experience acquired from calculations, it should
be recommended to take the position of the rear fringe at

Pn=Be . The value of ©s'-f at this time is very close to
that of 8,. For all the calculations, it is within # 2°.
If the gas exit angle of the black profile must be changed
by x4f in order to satisfy a requirement after the design
work is completed, then it 1s recommended to preliminarily
change the Bm by +A4B at the rear fringe as an approximation.
Of course, we can also find the exlt angle of the gas from the
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momentum varlatlion in the duct based on the velocity distri-
bution. But because the velocity distributions at the front
and the rear fringes can not be obtalined accurately at the
present time, it 1s still very difficult to accurately deter-
mine the exit angle of the gas using this method. The posi-
tion of the front fringe can be generally taken at B =P,

This is more appropriate for the pulsed cascades. Because of
the larger gas entrance angle Bi at that time, the deviation

of the incoming flow by the cascade is smaller[u]. In addi-
tion, since the mean stream line is located at the center of
the duct, the circular components of the deviation due to
blades on both sides can easily cancel each other. Besides, for
pulsed cascades which are denser, the slight change in the

gas entrance angle only affects the area near the front fringe.
The effect on the velocity distribution of the entire blade
profile is very sma11[5]. Even i1f there is some deviation, it
does not matter that much. For reversed cascades, the position
of the front fringe can be taken as 3.=3.+ AB where AB
can be 0° ~ 10° preliminarily. When the gas entrance angle Bi
is smaller, then Af must be larger[u].

In the selection of the velocity distribution on
the mean stream line, the wm values at the front and back
fringes are major factors which determine the thicknesses at
the front and back fringes. For conventional blade profiles,
it 1s recommended to take Wm=(1.10~1.35%11, at the front fringe
and Wn =(1.02~1.08)1,, at the rear fringe. Naturally, a
large value of wm should be used at the front or rear fringe
when thicker fringes are desired. In addition, the effect of
Wm' as discussed above should also be considered.

In the design of the cascades, the selection of cascade
distance can be made by referring to the existing cascade data.

But 1if the distance used is too large, it may not be possible
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Figure 9. The blade pro- Figure 10. The reversed type
file and velocity distri- blade profile and velccity distri-
bution of the mean stream bution of the mean stream line

line which is a circle (B,>03 which is an equi-z-directional
and a Su‘:}pended cnrain curve angular Variation curve.

Key: 1. W m/sec, 2. (Bn<0iKey: 5. center line of the inner
center line of the inner contact circle in the duct, 6.

contact circle in the mean stream line, 7. M m/sec.
duct, 3. mean stream line.

to use only the first three terms of the Taylor serles in the
mean stream line method. This can be realized by noticing a
rapid change of P, in the y direction (usually the fact that
1t becomes smaller near the inner arc shows up first) when
calculating equations (33) and (34). Therefore, in the present
use of the mean stream line method to design planar turbine

cascades, it is more appropriate to choose a cascade density
greater than 1.4

As discussed above, the solutions of the blade profiles
of the subsonic compressible flow and lncompressible flow are
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very close. With the same mean streum line, basically it only
shifts the blade profile towards the direction of the inner
arc. {(Strictly speakins it 1s impossible to compare between
the two cases. This 1s because that the velocity distribution
on the mean stream line cannot be the same for the compressible
and incompressitlc cases when the mean stream lines are the
same. Similarly, at wi the compressible we is larger, there-
fore, the velocity distribution values of the blade profile
obtained are also larger). In addition, because of the varia-~
tion 1n density, when the wm of the front (or rear) fringe is
greater or equal to that of wl or we, the increase of Pi, for
the compressible case is smaller which means that the front (or
rear) fringe can be made thinner. However, this effect is not
significant. Besides these, we can imagine that: in the sub-
sonic region, it may be more accurate to use the mean stream
line method when the M number is larger. This is because that
the trends of variation of wz and p are opposite where using
Taylor series expansion on both sides. Thus it makes it poss-
ible that the series of PW, may converge more rapidly.

IV. The Design Method Which Satisfies a
Given Blade Thickness Distribution

The next advantage of the mean stream line method is that
it allows the design of a blade profile which approximately
satisfies a preset thickness distribution in order to ensure
E?? strength, rigidity and cooling requirements of the blades

culation, there are two design methods to assure the thick-

. When using the analytical method to carry out the cal-

ness distribution as discussed in the following.

In one of the two methods, the design variables are
still Y»=¥(3) and Wa=W(z) as discussed before. In order
to assure the distribution of thickness at this time, we

al
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0u=o.&=w.&=—mn-%ﬁﬂ- (Me=0. B;=0", B.=-70% —pp-
=1.19, -§—=1.43. p_nB-- =0.265, =1.10, —’:—=1.43, 6’[‘,“ =0.46,
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Figure 11. The reversed Figure 12. The reversed type
type blade profile and blade profile and velocity

velocity distribution when distribution when the mean stream
the mean stream line is an line 1s an equi-z-directional
equi-z-directional angular angular variation curve.
variation curve. Key: 5. W m/sec, 6. 60°/stream
Key: 1. W m/sec, 2. center 1line.

line of the inrner contact

circle in the duct, 3. mean

stream line .

should follow the instructions in Reference [1] to

initially assume that (PWJa=t/t=8 t, determine the approximate
variational curve (PW,) .~z ., After the shape of the mean
stream line Y»=¥(z) is selected, the variation curve Wn.~=z
can be obtained from the first order isoentropic aerodynamic
equation. That means we can use an analytical expression

Wm=W(z) which is very similar to this curve to replace it
to solve the problem. Since the relation between (PI¥,)% and

#/t~8 1is already very similar and the thickness distribution
of the blade in actual design work only has to satisfy the
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Figure 13. The reversed type blade profile and velocity
distribution of the mean stream line which is a suspended
chain curve.

Key: 8. W m/sec, 9. 60% stream line.

requirements approximately, therefore it does not have to be
too rigorous to transform(pi ., .~z into Wms~=% and finally onto

Wn,=W(z)in order to avoid mathematical difficulties and
increase the computational speed.

The other method also used the selection of (PWia=w(z)
and y,=y(z) as in Reference [1] to be the variables in order
to obtain a serles of equations from which the analytical sclu-
tion can be found. Their forms are very similar to the ones
given in Section III of this paper. Since in the actual design
it does not require the strict assurance of the thickness
distribution, we can use the approximately corresponding

W..=W,(z)to replace (PW,)n=0(z) as the variable. The actual
equations are omitted here to save space. It has been docu-
mented in detail in Reference [8].
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VII. Solving the Forward Problem
Using the Analytical Method

It 15 weore complicated to solve the forward probtlem uslng
the analytical method because 1t 1s necessary to find the
analytical expressions Wa=W(z) and y.=y(z) which satisfy
the boundary of' the blade prorile at this time. However, it
still has some advantages over the numerical differentiation
method used in the past. Since 1t is unavoidable to carry out
a few trial runs to approach the boundary of the blade profile
in solving the forward problem[l]’ [3], it is of course more
convenient and fast to perform these ¢trial runs using the
analytical method. From thlis we can first obtain the mean
stream line and the trend of variaticn of parameters on it.

We then can use the numerical solution to make the final
correction. Thus the entire approaching processes can be com-
pleted faster and more accurately. Actually for those who are
already familiar with the analytical method, it is more
desirable to use the analytical method to carry out the entire
approaching process. Based on the experience acquired to date,
it 1s not goling to be slower than using the numerical method.
Since it avolds numerical differentiations, the accuracy is
even higher.

Because that the accuracy in using the analytical method
to solve the reverse problem 1s higher and there are lots of
calculated blade profiles available to be referred to,
therefore we have verified these blade profiles in order to
examline the validity of the empirical variational rules of

Ja~2z and (PI,),~: as presented in References [1] and [3].
The result of verification 1s satisfactory. We can only
supplement as follows: the position of the mean stream line
for an incompressible flow is even more toward the inner arc
than the one obtained using the plotting method in Reference
(3] (the physical meaning of this point 1s obvious). We
suggest that the envelop curve m’s in Figure 5 of Reference
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3] be used directly as the mean stream line¥, Tn addition,
under many conditicens there are similuaritics between the
(P)a~= curve and the ¢cdf /D~ =z curve (specific situations
are shown in Reference [8]). Therefore, in solving the forward
problewn using the analytlcual method, it is possible to use
these recommended analytical expressions which are determined
to have approximately the same variations as Ym and (Pv,)n
or (PW)a to obtain the preliminary solution. When the obtained
duct boundary 1s not consistent with the given condition, we
can carry out a correction as presented in References [1] and
[3]. and then list the analytical expressions after the correc-
tion. If one is familiar with the characteristics of various
curves, it is not a difficult step either. As discussed above,
in the selection of the analytical expressions of W and

(pw,): or w;, it is possible to connect them with several
curves which is more convenient in finding the solution to the
forward problem. If it 1s difficult to make W,, Wi, I, 2and

You Bme By Bn cOntinuous at the junction, it 1is also possible
to separate the defined region by assuming that another segment
of a smooth curve is connecting them.

VIII. Accuracy of the Analytical Method

The mean stream line method has already been verified
experimentally. This paper merely presents an improvement in
the specific calculation procedure. It does not alter its
conditions and simplification assumptions. Therefore, it is
not necessary to conduct another experimental verification.
However, for the further verification of the reliability, the
speed of solving the forward problem, and the applicability to
the compressor cascades, we have carrled out the forward

¥ Comrade Wel Yu Ping who 1s a graduate student of Tsing Hua
University Internal Combustion Machinery Group has partici-
pated in this verification work.
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problem calculation using the analytical method on the two
cascudes with vxperlimental data shown In Referqneces [#) and
[6]. The comparison of calculated and experimental results
are shown 1n Figjures 14 and 15. The former corresponds to a
cascade with the second series of original black profile in
Reference [4] with :8:=60" | attack angle (angle between wi
and the line of the arc) is 75°, the center line deflection
angle of the blade profile is 120°, and the density is 1.8.
The latter is the Model 3 pulsed compressor planar cascade
in Reference [6]. The purpose of this calculation is to
explore the teasibility of using the mean stream method on
an axial flow compressor planar cascade. References [4] and
[6] only gave the experimental data of the above two cascades
at low velocities. Therefore, in our calculation we assumed

that the working medium is an incompressible fluid.

From Figures 14 and 15, it can be found that the calculated
results are in satisfactory agreement with the experimental
data (the results of turbine cascades are even better. For
compressor cascade, although the absolute values of the velo-
city distribution are slightly different, yet more importantly
the trend of velocity distribution variation 1s completely
consistent). It completely satisfies the requirement of
engineering calculation. 1In addition, in the calculation we
have verified that the use of the analytical method to solve
the forward problem 1s effective and fast. For both types of
cascades, 1t only requires about five trial runs to fit all
the coordinates of the calculation points on the surface of
the blade profile. Since it only requires very small amount of
time to complete one run, therefore the total required time
is not too much.

In the example presented in Section V for the reverse
problem, when the mean stream line is a circle and its veloclity
distribution is a constant, the flow inside the duct 1s a free
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Computational Example of tional Example of the Forward
the Forward Problem with Problem with Experimental Data.
Experimental Data. Key: 4. calculated value,
Key: 1. <calculated 5. experimental value.
value, 2. experimental
value.

whirlpool. The solution at this time can be obtained rigor-
ously: The boundary of the duct and the mean stream line are
concentric circles and the velocity distributions on them are
also constants. Their specific numerical values can also be
easily obtalned. Comparing the results of the rigorous
solution and those obtained using the method mentioned in this
paper, we can see that they are completely consistent. There
is only very small difference in a small segment of the front
and rear fringes and those areas are not supposed to be
accurately determined by the mean stream line method. This
also demonstrated the accuracy of this method.
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Finally, it should be pointed out that: the above
caleculntions in the examples althouch were carried out using
ordinary slide rules yet the coordinate points on the surtface
of the blade prceflile are very smooth (when slight uncmoothness
is found in a certain location, it can even be used as in
indication that there is problem in calculation at this point
and requires an examination). From this the advantage of the
analytical method is fully demonstrated (There 1is some slight
scatter of the coordinates obtained using the numerical
solution. Refer to Reference [31).

IX. Conclusions and Projections

This paper presented an improvement procedure for the
mean stream line method - using the analytical solution. This
improvement can significantly simplify and speed up the calcula-
tion process. It does not require the multiple usage of numeri-
cal differentiations. Slide rules can be used in the calcula-
tion. The work load required to correct a mistaken term is
also very small. It also simultaneously raise the accuracy
drastically. In addition, we can control the design variables
to calculate good blade profiles. Therefore, this method
should be recommended in the design and calculation of turbine
cascades of usual densities and pulsed compressor cascades of
high densities.

Other than that, the analytical solution itself still has
a lot of room for further development which 1s yet to be
explored. For example, using its high calculation speed
characteristic, we can obtain a series of cascades for compari-
son to provide detailed information on the selection of para-
meters in the design of cascades or to even directly obtain a
family of cascades to be selected for use. Because the analy-
tical solution 1s used, it also opened the possibility of
using direct analytical method (even in approximations) to
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determine the optimal desicn parameters. When it is necessary,
the analytical solution also allows the conditions that hicher
terms of the Taylor series expansion with respect to the y-
direction must be used. This is because that first higher
order derivatives can be more precisely determined (1t is not
easy to obtain accurate values using numerical differentia-
tions) and secondly the use of more terms of the Taylor series
will not be complicated by too much as compared to the use of
the numerical solution. Thus turther expansion of the Taylor
series in the y-direction can be used. Then 1t is possible to
design general compressor cascades and to select the inner
(outer) arc of the turbine cascades to calculate the outer
(inner) arc using the mean stream line method. Especially, it
is highly probably to design axial compressor cascades with
higher density near the inner rdius using this method. Figure
15 is a preliminary example of such a case. Although the den-
sity of a conventional cascade is much less dense, yet its
curvature is also much smaller. This corresponds to the use
of a small segment in the z direction of the blade profile as
the expansion region for the calculation. Therefore, it seems
that it is even possible to use only the first three terms of
the Taylor series to calculate compressor cascades. The
capability of designing one blade surface from the surface of
orie blade profile of the turbine cascade also provides advan-
tageous conditions to assure its technological and aerodynamic
properties. 1In addition, it is also worth considering as to
how the problems on the arbitrary revolving surfaces and binary
ducts (such as the axi-symmetrical gas inlet tube and the com-
pressor tube of turbine cascades) can be solved using the
results of the analytical solution. For all these, we wish
that development will be gradually make in the future,

Under the guldance of the authors and Comrade Chiang
Shih Yen, students of the 1963 class of Tsing Hua University
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gas combustion machinery group, Liu Chin Yu, Shu Weu Tao,
Show Shau Hau, Wang Chan, Kuo Kao Tsian and Chen Chun Hua
have explored part of the problems discussed 1In thils paper

in their graduation designs to various extents. rrolessor

Wu Chun Hua has reviewed this paper in detail and of'ten
offered valuable suggestions on the developmental direction
and problems in this work. Comrade Zhang Chu Chow has
plotted all the figures on this paper. We wish to express
thanks to all of them.
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APPENDIX
The following two tables are presented in the appendix:

1. Table 2. Table of Special Equations when Frequently Used
Geometrical Curves are Chosen to be the Mean Stream Line.

2. Table 3: Table of Functlions and Equations of Functlons
Used in the Calculation.
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Curves are
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Table 3. Table of Tunctions Uosed in thie Calculation
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65° 0.07548 ' 0.3046 0.02891 0.2195 ~0.1590 -~0.5445 0.01348
70° 0.04001 0.1888 0.01286 0.3252 ~0.09663 ~0.3133 0.004680
75° 0.01734 0.09125 0.0014334 0.2735 —~0.04621 ~0.1444 0.0011861
80° ' 0.035236 0.02968 | 0.0008951 0.1549 - 0.01492 | ~0.04555 0.0001579)
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i . .
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0.4871 —0.5000 0.0000 -.25981 1.2500 -—1.7500 ~2.5981 5.8457
0.7127 -0.3420 -~0.5176 -2.2233 1.0130 -1.7357 ~1.9398 5.3780
0.8506 -0.1736 -1.0000 —-1.6688 . 0.7605 -1.6204 -1.2981 4.558¢4
0.8839 0.0¢00 -1.4142 -1,00%0 0.5000 —-1.4142 -0.7071 3.50C0
0.8254 0.1736 -1.7321 -0.3008 0.2393 -1.1330 -0.1963 2.3353
0.6976 0.3420 -1.9319 0.3459 —-0.01303 ' -~0.7978 0.2111 1.1999
|
0.5313 0.3000 -2.0000 0.8660 - 0,25V - 0.4330 . 0.35000 0.2165
| i
]
0.3785 0.6128 -1.9319 1.2038 - 0.4642 | ~0.06492 l 0.6640 - 0.5195
0.2073 0.7660 -1.7321 1.3268 -0.619) 0.2802 0.7060 - 0.9509
0.09390 n.8660 -1.4142 1.2321 - 0.7990 0.5777 0.6378 -1.0646
0.03031 0.9397 -1.0000 0.9436 - 0.9095 0 8056 0.4791 - 0.3920

Key: 5. Even, 6. 0dd.
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10° 0.8975 1.3388 1.5543 1.571.2 0.7993 0.1609
15° 0.7805 0.6870 2.0116 1.1347 10735 ' 0.2176
20° 0.6356 0.03745 2.1677 0.6522 1.2198 ! 0.2506
25° 0.4785 ~0.1620 2.0365 0.2400 1.2359 0.2384
s0* 0.3248 —0.7307 1.6875 -0.1055 1.1367 0.2436
35° 0.1a71 -0.7657 1.2231 - o.;sos 0.9274 0.2105
©w* 0.07806 —0.5426 0.7502 -0.3473 0.7284 0.16%6
. s’ 0.0000 —0.4419 0.3536 -0.3125 0.5000 0.1250
50° | —0.04s12 —~0.2483 0.07988 —0.2315 0.3009 0.08106
$5°: ~0.06454 ~0.1083 ~0.06527 -0.1438 0.1505 0.05085
80" ; ~0.06250 ~0.03125 -0.1083 ~0.07422 0.05413 0.02706
€5° [ -0.04852 ~0.001520 -6.09085 -0.0%072 0.001901 0.01222
70° ] -0.03065 0.003824 -0.05309 ~0.009520 -0.01120 0.004398
7s* | -0.01502 0.001955 -0.02138 -0.001923 -0.01002 0.001218
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0.1460 -—2.9561 0.1653 0.1733 —0.6426 0.01646
0.3133 —2.0491 0.09084 0.1299 -0.7802 - 0.2437
0.309¢ —1.2374 0.04419 0n.08839 -0.7071 -0.3750
9.2256 —0.6202 0.01873 0.05403 - 0.5064 - 9.3836
0.1309 —0.22684 0.006719 0.02917 -0.2813 -0.3091
0.06055 ~0.02706 0.001953 0.01353 —-0.1083 -0.2030
0.02159 0.0392% 0.0003301 0.005164 -0.01477 -0.1073
0.005481 0.03804 0.00006404 0.001504 0.01417 - 0.04351
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Table 3. Table of Functlons Used 1In the Calculations (concentration 3)
function Ty T, M, 1y Hy
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coss Bsiof x + cosdfsinif x
equation cost BsinP | 2cnseBsinaf 3cussBsini B
(2134003 ) | (dcos3fB-1) !
function-g
i odd odd even even even
characteristics
p=o0° 0.0000 0.0000 0.0000 0.0000 0.0000
s ~1.0854 0.08454 0.02230 0.0149 0.02236
i 10° ~1.2969 0.1336 0.08293 0.05673 _ 0.08380
1} 15° —2.2540 0.1961 0.1649 0.1166 0.1690
i '
i; 20° ~2.1248 0.2079 0.2458 0.1824 0.2571
‘ 1 25° —1.5225 0.1204 0.3039 0.2410 0.3276
b
b 30° —0.3492 0.1582 0.3248 0.2813 0.3654
! 35° - 0.2237 0.1163 0.3045 0.2963 0.3623
f
40° 0.1361 0.07623 " 0.2502 0.2846 0.327Q
45° 0.3536 0.04416 0.1768 0.2500 0.2652
50° 0.3756 0.02232 0.1017 0.2004 0.1932
55° 0.2863 0.009596 0.04001 0.1453 0.1250
60° 0.1692 0.003383 0.0000 0.09375 0.07031
65° 0.07708 0.0009223 ~0.01771 0.05241 0.03322
70° 0.02561 0.0001760 —0.01880 0.02417 0.01240
75° 0.005436 0.00001945 —-0.01184 0.0c8373 0.003251
80° 0.0005393 0.0000008142 —0.004466 0.901764 0.0004594
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| THE ANALYTICAL SOLUTION OF MEAN-STREAM LINE |
METHOD FOR TWO-DIMENSIONAL CASCADES i
‘ ——SOME DEVELOPMENT OF MEAN-
‘ STREAM LINE METIOD(I)—

| . Tsay Ruey-shen

ABSTRACT

A modification of me.n-stream line method is presented. With this modification, 1‘n‘
computation of two-dimensional cascade can be calculiated analytically and the accuracy
i solution is higher than the original method as well as the time needed for one compnicte
caleulation is shorter. Sume exarmaples of solution ure compared and discussed for finding
the better form of the mean-stream line and the better variation of velocity_alone the
mean-stream lice. With this discussion and the cquations und talles presented in this
paper, only abjut 8 nours are needeld fir projecting a goud' turbine cascade circulated
by compressible flow. and the itecation in the direct problem to fit the giver b'ade

shape is more practical. ‘U'he results of calculation of this method compared wcll with

experitnental data. Some probabilitics of development of the mean-stream line method
are discussed in the end of this paper.
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f CALCULATICN OF TRANSONIC FLOW IN PLANAR CASCADES -
SOME DEVELOPMENT OF MEAN STREAM LINE METHOD (IV)

TP VO P RSV SIE o

i Tsay Ruey-shen
Abstract

Because the equations of the mean
stream line method are consistent at sub-
sonlc and supersonic speed and there does
not exist an odd point at !i=1, therefore
they can be used to calculate transonic
flow in the cascades. Comparing the cal-
culated results with the experimental data,
we found that it is feasible to use this
method. The approximate range of condi-
tions under which this method 1s applicable
1s also analysed in this paper.

Symbols

sonic speed

function of 8[3]

coordinate in the directlon of the stream line
Mach number of the gas flow

direction normal to that of the stream line

An distance of expansion in the n direction
relative flow density of the gas flow

D =2+~ Woe

el

w/
f lwt
velocity of the gas flow

coordinate tangent to the direction of the cascade
distance of expansion in the y direction A
axial coordinate of the turbine machinery ]
arc tg (fit) , gas flow angle

&)

ratio of specific heats of gases

W/a, relative velocity of the gas flow
density of the gas

flow function

> € D > ™ N D <
g > g

amount of flow within the distance of expansion
LO
28~

{
;




Q radius of curvature of the strecam line
Superscript
d/dz, total differcentiation with respect to the 2z
direction
Subscript
1 component in the 1 direction
m value on the mean stream line (selected)
p value on the inner arc of the blade profile
s value on the back arc of the blade profile
4 component in the z direction
1 value under one-dimensional assumption
1.2---n different functions
*

critical values of the gas flow
I. Introduction

In recent years transonic cascades have been widely used
in turbine machinery, it is there imperative to obtain better
understanding about the state of flow in those cascades. It
i1s well known that even under the simplified condition of an
ideal gas flow in a planar cascade, there is a certain degree
of mathematical difficulty in solving for the transonic flow.
This 1s because that the basic differential equations des-
cribing the flow in the subsonic and supersonic regions are
different types. One 1is the elliptical type while the other
is the hyperbolic type. It 1s not convenient to treat them
in an unified manner.

But the above problem only appears in multi-dimensional
equations. In one-dimensional flow, the subsonic and super-
sonic flows are both represented by an integrated algebralc
equation with the exception that we must notice that the M
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nurtbter is a dcuble value function of the fleow density. Thero-
fore, we can assume the following: The difficulty in solving
the transonic {low problem 1s because the multli-dimensional
flow equation is used directly. If we can initiate the general

(1}

decrease the dimensions all the way to one then we can use

potential flow theory of turbine machinery to continuously

the simple method to directly obtain the solution of transonic

(2] is sucl a method in

flow. The mean stream line method
nature. It transforms the two-dimensional flow into a flow
on the one dimensional flew on the mean stream line ym-ym(z)
and the expansion of a flow parameter in another direction
(usually in the tangential direction y of the turbomachine.
Thus it may be possible to solve the transonic flow problem
using an unified mathematical treatment. Especially if the
analytical solution method is used instead of the numerical
method, it is much more easier to verify this possibility and
more suitable for the kind of calculation accuracy reguired

in the transonic region.

Based on the above consideration, this paper presents a dis-
cussion of solving the transonic flow in planar cascades using
the mean stream line method. Detailed introduction of this
method has already been documented in References [2] and [3],
so it is not repeated here.

II. Equations of Mean Stream Line Method
Applicable to Transonic Flow

Reference [3] has derived the equations of the mean
stream line method which are suitable for the analytical solu-
tion. But 1n order to be applicable to high speed flow, 1t
1s better to alter the forms slightly. In addition, in order
to define the boundary of the flow, we still must solve a

third order algebraic equation. Finally, we can use the flow

Ly
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function concept to derive a form which 1s even easier to
solve (see Appendix A). It is summarized in the followilng:

The partial derivative expanded in the direction tangent
to the mean stream line:

! ?f'.\ P Y - s - - ] \’ ' ' (
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The equation which determines the flow boundary is
(notice that Ay has plus and minus signs):
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The equation which determines the velocity distribution
is
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In the practical calculation, usually the remaining small
terms in equations (5) and (6) are neglected. The B,'s in
equations (1) - (4) are simple functions of B and their defi-
nitions and numerical values can be found in Reference [3] or
in Appendix B.
Wh(z) as:

Furthermore, 8 and Bn can be obtained from

.~
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ITII. The Feasibility of Solving Transonic Flow
Without Intense Shock Wave Using the Mean
Stream Line llethod

As discussed above, the mean stream line method reduces
a two dimensional planar problem to a one dimensional flow on
the mean stream line and the expansicn of a flow parameter in
another direction. There 1is not difficulty and doubt in cal-
culating the one dimensional transcnic flow. Therefore, the
only thing which we must check in solving for the transonic
flow is that whether it is feasible to expand into a Taylor

series in another direction which intersects the stream line.

Apparently, if at places where there is obviocus Jumping
varlations in the flow parameters it is impossible to obtailn
the solution using the Taylor series expansion. Therefore,
the mean stream line method cannot be used in regions with
strong shock waves. Besides this point, because the same type
of basic equations are used in both the subsonic and supersonic
regions in the derivation of these partial differential equa-
tions used in the expansion, the equations obtained have no
odd point at M = 1, as long as the flow field varies relatively
uniformly and smoothly, it is as effective for subsonic flew
as for supersonic flow when using the series expansion method
to determine the corresponding flow. Since it 1s possible to
use the mean stream line method for the form, the same method
should also be applicable to the latter. For good cascades
the flow inside basically varles relatively uniformly and
smoothly which coincides with the above requirement. The
exceptions are areas near the front and rear stationary points
where the mean stream line method cannot be used to obtailn
accurate solutions.
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In addition, we may consider the following: The potential

{ flow 1s a reversible flow and the boundary condition of planar
! cascades 1s usually that homogeneous flow exists at infinite

distance both upstream and downstream. Therefore, when it 1s

;' reduced to a one-dimensional problem, the relation between

each flow parameters in the direction of the expansion 1s also .
a ore-dimensional flow relation (passing through one stream i
line to Infinity and then flowing back on another stream line).
There is no difficulty involved such as the ones encountered j
in the treatment of multi-dimensional transonic problems. The
only thing is that the flow variables (there is only one var-

lable in the one dimensicnal isocentropic flow) are not defined

through the use of variations of parameters in the direction of
the mean stream line.

In the one-dimensional flow, the only difference between
the supersonic flow and the subsonic flow is that the flow
density of the former is a decreasing function of M number and
latter is an increasing function. When M = 1, q = 1 reaches
the maximum. Therefore, in the expansion to obtain the solu-
tion, it is only natural to consider that these relations
should be checked to see whether thev are satisfied. In prac-

3
La s

L A
tice, when M = 1, we should get Y“i=5 and :U%<:o . When
2N INET
1\ - -~
M<1, ’:i should have the same sign as . 7: . When M > 1,
ot on

they should have opposite signs. Using equations (A - 10) -
(A - 12) in Appendix, we can see that these relations are all
satisfied.

(4] using s rles expansion
in a direction which intersects the stream line to solve for

the transonic straight axial nozzle which indicates that the

above 1dea 1s feasible.

There was a successful example

Of course, there 1is another probvlem. In the classical :

&5
el

e ettt




subsonlc mean stream line method it 1s only necessary to use

up to second order partial derivative of velocity in the Taylor
‘{ series expansion. Is it enough to use up to the second order
term in the transonic rezion? In other words, when only up to

S
oy

the second order derivatives are used, how far can the expan-
?ﬁ sion distance be? Can this be applicable to general transonic
cascades? This problem will be examined through the actual
calculation and qualitative analysis presented in the next
section.

) IV. Expansion Terms and Effective
{ Expansion Distance

The mean stream line method is a simple method which
enables us to obtain results in short period of time using
slide rules. Therefore, although in principle the more terms
we use the more accurate 1t 1s, yet in the actual applicaticn
in subsonic cascades we only used up to the second order par-
tial derivatives of veloccity. Of course, we wish that we can do
the same thing for the transonic flow. The calculated results
indicate that it is possible for ordinary cascades. The examples
of the calculation process are shown in Figures 1 and 2.
Figure 1 is the NACA turbine cascade whose experiment results
are obtained from Figure U42(b) in Reference [5]. In Reference
[6], 1t has carried out a calculation for this cascade using
a time related method. The results.are also plotted here.
From this figure, it can be found that the hand calculation
i obtained using the mean stream line method 1s satisfactory.
j It seems to be even better than the results obtained using the
time related method by an electronic computer for this speci-
fic example. Figure 2 shows the calculated result for the
TP-1A turbine cascade of M3I¥ which 1is also satisfactory.

But trlal calculation indicates that, when the Mm number
in actual working condition 1s larger and Aé ls also larger,
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1t 1s not cood to ure anle ur v

» dAeprivatives

L2 TIPS e v e 4 e 4

of velocity. Or, in othor worjr, !¢ fn:t-arer that its effec-
tive expansicn distance 1z -t loe e et vre This pheno-
menon can be explained bty tho rnature of e souan ctream line
method anl the oxpansion cgustions {(Hguntione (4-12) - (A-15)
in the Appendix) in the normal directien of o veloelty.

Because this method is the

flow to a one-dimensional !'low

cirmr a two-dimensional

in the direction of the mean

stream line plus the correction in another direction (which 1is
reflected by the partial derivative of the velocity in that
direction). Therefore, the more the flow approaches a one-
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Figure 1. The cascade pattern and 1ts experimental and
calculated results. Key: 1. relative width of the cascade,
2. experimental data, 3. mean stream line method, 4. time
related method.

dimensional flow or the smaller the value of the partial
dérivative (the less correction required), the more accurate it
is; which also means the farther the allowable expansion dis-

‘
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tance 1s. Of course, when the flow curvature
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respect to the width of the flow boundary (corresponding to

the width of expansion) and the expansion and contraction of

the flow boundary (corresponding to (i% ) are smaller, the
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Figure 2. Cascade pattern and its experimental and
calculated results. Key: 6. relative width of the cascade,
7. experimental data, 8. mean stream line method.

more close to one-dimensional the flow becomes. Therefore,

the application of the mean stream line method should be
limited to the situation that A%é ) and

'_1_?'_\ B ) , . vy

Ndi 21 (or \%LDJ ) cannot be too large. This point
1s also shown in the expansion equations (A-12) - (A-15)
because the velocity correction due to the presence of some

partial derivatives consists of terms with iﬂ/ and ’lég)gn
m

AN/
"S?m (or

(the flow parameter variations of a good cascade 1s smooth

s0 that only lower order derivates are considered. From

the expression of the first order derivative (A-12), it can
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found that it 1s necessary to require that the term iZE;
which is affecting the curvature cannot be too large. If we
use this method to obtain the solution of a free whirlpool
with variation of direction but no variation in speed and
compare the result with the rigorous resolution, we realice
that in order to obtain the necessary engineerine accuracy

M P sdoay -
usually it 1s desired to have = Z 332 or JET. €038

“m
".z:ﬁ, Cm
(the ordinary good cascades are all within tdis range). There
is another point worthwhile our attention which is that the
N

limitation in the magnitude of ;52 is not related to the
Lol

Mm number of the flow (see Equations (A-12) and (A-13)).
Indeed, the velocity distribution of a free whirlpool is not
related to the M number. Therefore, when we use the mean
stream line method to solve the free whirlpool or a flow which
principally involves a change of direction (corresponding
impulsive cascades), Mm has no significant effect on the
accuracy of the calculation which means that there 1s no added
difficulty in solving for the transonic flow. However, on

the contrary, from equation (A-13) it can be found that the
effect of the acceleration ngf on the mean stream line on the

>

accuracy of the calculation 1s closely related to Mm and it is

ot o e

proportional to ,;:u+ . This explains the above phenomenon
that when -1;1 is large if Mm is also large then the effect

expansion distance 1s short. Comparing to the limiting number
of " for the condition that only turning but no accelera-

2o

tion occurs, if we consider that the same magnitude of limiting
number should be applied to the second order partial derivative
for the condition that only acceleration but no turning occurs,

then approximately we get t, .o ;gﬁj.rgg or

07 P

”Q?\ﬂﬁvf'i,Otherwise the calculated As and kp will be too
large. Of course, if it turns as well as accelerates, then

.

both limiting regions will have to be even more narrow .
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However, it 1is not a linear additive relationship. Using the
Prandtl-Meyer flow with a known rigorous solution to verify
thls point, we found that this rule 1s still feasible. The
relation between jj::ﬁ% and M 1s shown in Figure 3 (the

figure shows the condition under which ? = 1.4 and for the

generally used Y value the variation of this curve is very

small). It can be seen that for the same , the effec-

CAar
tive expansion distance when M - 1.2 i1s only half of that

for the incompressible case (under the pure acceleration and
no turning condition). Therefore, for supersonic flow, if

the acceleration (deceleration) of the gas flow is severe

then the use of only up to the second order derivatives in the
mean stream line method 1s not acceptable. But, for an ordi-
nary good cascade (at least for a turbine cascade) the accer-
eration (deceleration) in the transonic section is relatively
slow in order to obtain the good characteristics. Therefore,
it 1s not hindering the use of the mean stream line method
which only uses up to the second order derivatives in the
calculation. Figure 1 and 2 shown before are such examples.

The above only analyzed the effect of the curvature and
accleration on the mean stream line on the partial derivatives
of velocity. The effect on the partial derivatives of the flow
density is not mentioned. This is because the two are actually
consistent through the equation of the one-dimensional flow.
The latter is more complicated to analyze. Since the one-
dimensional 1soentropic flow only has one independent variable,
therefore it 1is sufficlent to analyze the derivatives of
velocity alone. In addition, the above analysis was mainly
carried out using physical diagrams. Mathematically it is
better to determine 1ts error or convergence after the deri-
vation of higher order terms of the series. But 1t is very
complicated and may not be necessary for an engineering calcula-
tion method such as the mean stream line method.
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From the above analysis, we can explain the following
facts:

1. The mean stream line method 1s more suitable for
impulsive turbine cascade than for the reversed type[3]’ [9].
This is because that the latter, with exception of the possi-
bility of having a larger ‘f}bﬁ , definitely has a A7y

VA
which 1s much larger than that of the former. Therefore, it
corresponds to the fact that the latter has one more factor
affecting the inaccuracy of the latter than that of the former.

2. Sometimes (such as the reversed type cascades) the 60%
stream line is used as the stream line selected for expansion
on both sides which is more effective than choosing “he mean
stream line[gj.
closer to the geometric center of the flow boundaries than
the latter which makes the expansion distance Ay on either

This is because the former sometimes is even

side smaller. Therefore, the expansion is even more accurate.

7/
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As an example purposely lestened to test the method,
Figure U shows the calculated results of a supersonic com-

pressor cascade (actually 1n the experiment acceleration

POV U S




existed within the flow boundaries). The experimental results
are obtained from Reference [10]. Although this cascade has
been operating at Mm = 1.6~ 2.1, yet the calculated results
(especially in the front half of the flow boundary) still have

a certaln extent of reliability. In the latter half of the

flow boundary M number has reached above 2.0. Therefore,

the AS and Ap obtained from the calculation are both on the high
side. From this we can see that the use of the mean stream line
method to calculate ordinary transonic cascades (M=~ 1.3 anl.4)
should be feasible.

Therefore, the presently available relatively simple mean
stream line method can be directly extended to the transonic
planar cascades. Since the nature and the equations of this
method are not changed, all its advantages and disadvantages
still remain the same[2]’ (3]. They will not be repeated here.
As for the design experience and technique, it is also not

ik

difficult to extrapolate from the experience acquired in the
subsonic situation as long as the characteristics such as q(M)
has a maximum at M - 1 are noticed. For example in the selec-
tion of the position of the mean stream line in the forward
problem, in the pure supersonic region it shou’d be chosen
closer to the inner arc than the geometric center line which
1s opposite to that in the subsonic condition.

In order to further increase the accuracy of this method,
it 1s possible toadd higher order derivatives as the correction.
But the calculation equation will become much more complicated.
It also may not be able to expand very far. It may not even
be better than the situation that a shorter expansion distance
is first chosen in the selection of the stream line expansion ,
to obtain a new stream line and then gradually expand towards =
“ the outside to be more effective. However, such a method does
not allow the use of the advantages of the mean stream line
method[3].

Another posslble way to solve the high M flow

73 :
96" !




e - -

B o S —

problem 1s to use the mean stream line method to sclve the
transonic region. Af'ter reaching the pure supersonic region,
we will change to the uncomplicated supersonic characteristic
line method to go on calculating. The total calculation would
not be tco complicated either.

V. Conclusions and Projections

Through qualitative analysis and actual calculation, this
paper proved that the existing mean stream line method
(especially the analytical solution which eliminates the error
in numerical differentiation) can be used to ¢alculate flow
in an ordinary transonic planar cascade and still maintains the

(31

results with sufficient accuracy can be obtained using a slide

unique characteristics of this method[zj’ For example,
rule within a couple of days (in the reverse problem). This
paper also discussed the limitations of this method.

The extension of the method introduced in this paper to
the flow in a cascade on a revolving surface should also be

feaslible as indicated by the precedent[ll[’ [12].

In addition, as for whether there 1s a more generalized
meaning in the reduction of a multi-dimensional flow problem to
an one-dimensional one followed by the use of the characteris~
tic that the one-dimensional flow equation does not have too
much difficulty in the transonic region to calculate the flow
on a chosen stream line then to expand outward and finally to
obtain the transonic flow solution is yet to be studied.

¥Fan Yee-Chien of Nanking Turbine Electric Machinery Factory
and L.S. Dzung of BBC in Switzerland have worked in this area.
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APPENDIX A*

In Appendix A, we briefly introduced the use of flow
function expanslon to cbtain fleow bcecundary and the analytical
solution of the planar flow which 1s expanded in the normal
direction of the stream line using the mean stream line method.
It also explained that the analytical solution of the mean
stream line method can also be used for compressor planar cas-
cades with higher density.

I. The Use of Flow Function To
Solve for the Flow Boundary

For every z on the boundary of the flow in the cascade,

the flow function has the relation c“p;Q}dé If we consider

y as a function of 4 HY=%. ), then
" '
. \,/ . -
dy= 9% f; (A-1)
and : 24 ~
ag= = (B ev o 2B evie il avhe (a2)

The partial derivatives of y with respect to ¢ in equation
(A-12) can be obtained fram equation (A-1) as:

y
[

» (A-3)

(A-4)

*This appendix 1s mainly a combination of the graduation theses
of some of the students (Liu Yen-hau, Yuen Chie-Quin, Lee Foo-

ming, Wu Wen-ching, Yu Tso-chu, etc.) of the class of 59 in the
department of modern mechanics at China Science and Technology

University. Since it has never been published, it is 1ncluded

here.
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Since the original mean stream line method only uses up
to the second order derivatives »LSE to provide sufficient

| accuracy, therefore the flow functiui expansion is also used

up to the }uﬁlterm. Substituting the above three equations

into (A-2),Ox; then can obtain the equation of the flow boundary

which can be solved directly: i

. BRI
. e Lo F

[
=

A TS e e R M g R R
I TN S T T (A-6)
A - - +

1
RS 3

o
~
\
v
s
o
h]
—
[N
~
}
v
-
-
WL
(™)

R

where Ayl 1s the expansion distance when the flow is assumed
to be a pure one-dimensional flow.

AY = 28 e (A=T)
]
Using this method to find the solution for the example
* in Reference [3] and comparing the result with that obtained
{ originally using the third order algebraic equation method,

; we realized that the solutions obtained using these two methods
are very close.

II. The Method Used to Expand in the Normal
Direction of the Selected Stream Line

The original mean stream line involves expansion 1n the
y direction which i1s convenient in the calculation of planar
cascades. If we establish a new coordinate system (1l,n) at
each expansion point (z,y) on the mean stream line where 1 is
the tangential direction of the stream line and n is its nor-
mal direction with the direction defined as pointing from the
center of curvature toward the stream line (See Figure A-1),
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then 1t i1s possible to expand iIn the new coordinate n direction
for each point. At this time the forms of the partial differ-
ential equations in Reference (3] are still valid wlth respect
to the new coordinate systems. The only thing is that all the
Bm values should be 0 looking from the new coordinates. In
addition, the superscript ' should be considered as the partial
derivative of 1 rather than z. The two derivatives should

have the following relationships:

Jra oA
% GUAaT R (4-8)
FoA b~ B dne
R T SN (A-9)
Therefore of all the R ,:52 and B8(z) are originally known,
then it 1s possible to calculate all the - and --; , based

- A sy

on the above two equations. Subsequently, they can be sub-
stituted into the partial differential equations in the n dir-
ection to find the solution. Actually since the Bm values

are always zero in the new coordinate system, it is easier to
obtain the partial differential equations with respect to the

n direction than getting those in the y direction. It is shown
as the following (where 2 i1s the radius of curvature of the
selected stream line).

R [
T T ENT (A-10)
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nate system. Return Flow !assing by.

The equation which determines the velccity distribution
then becomes:

-~

)\_:‘N' 3 \i'f;_“\.“-. Nt '.{.“~T\";:"'zfv‘,~, sty ] (A-15)
If the normal direction expanslon method 1s used to solve

the planar cascade problem, althourh the calculation 1s less

in the determination of partial derivatives, yet, because there

is another transformation process to turn the flow boundary from

the (1, n) coordinate system back to the original (Z, y)

coordinate system, the total amount of calculation 1s not going

9t
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to be too much less. Furthermore, the normal direction
expansion method makes it most difficult to calculate the
velocity distribution in the most important inlet and outlern
regions on the back arc. Therefcre, 1t may not be sultable
to use a pure ncrmal direction expansion method. However,
for some flow boundaries where the cross sections of the
inlet and outlet are perpendicular to the mean stream line or
where there is a large turn, it is better to use this method.
For example, the boundary where the return flow passes by in a
return flow turbine (See Figure A-2) is such a case. We have
used this method to design the flow boundary of a natural gas

expansion turbine. The preliminary result was satisfactory.

III. The Feasibility of Using the lMean Stream
Line Methed to Calculate Axial Flow
Compressor Planar Cascades

Reference [3] pointed out that it is possible to use the
existing mean stream line method to design planar cascades of
the axial flow compressors. In order to verify this view,
we have actually solved a series of forward and reverse prob-
lems of this type of cascades. The forward problem is to
find solutions for cascades with known velocity distributions
such as the NACA 65 series and the NGTE C series cascades.

The range of variation of the cascade density calculated is
1.06 ~1.20. The range of variation in the geometric deflection
angle of the blade profile is 2U4.6° . 65°. The results obtained
from the forward problem are more consistent to those obtailned
experimentally. This also means that for axial flow com-
pressor planar cascades with higher density, it 1s still possible
to find the solution using the existing mean stream line method
and the first three terms of the Taylor series. It breaks the
tradition that such a method was only able to be used 1in the
calculation of turblne cascades.
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APPENDIX B

Appendix B gilves all the expressions and numerical
i tables of the B (8) functions in equations (1) - (4) to be

used during the course.
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THEORY O THREE-DIMENSIONAL FLOW IN TRANSONIC TURBINE LACHINERY
WITH SHOCK WAVE INTERRUPTIONS

Hsu Tsen-chuny

ABSTRACT

In order to be consistent with the three-dimensional spatial
flow in turbine machinery with shock waves, thils paper derives
the "four-dimensional" basic equations of the Sl and S2 flow sur-
faces through the extension of the flow surface concept to the
unsteady flow condition. They are also applicable to spatial
three-dimensional unsteady flow. Using the theory of the charac-
teristic line for these equations, we can obtain the mutual rela-
tionships between the characteristics. From them, we can deter-
mine the boundary conditions of the steady flow. These basic equa-
tions, boundary conditlons and applicable initial conditions can
completely establish the transonic flow problem with shock waves
for both types of the flow surfaces. Thus, based on the procedures
recommended in this paper to obtain the ccimpplete solution of the
three-dimensional flow and by choosing the proper difference equa-
tlons, the numerical solution can then be obtained.

I. INTRODUCTION

In order to obtain the solution of three-dimensional flow in
subsonic and supersonic turbine machinery, [1] presented the S, and
82 relative flow surface theory to establish the basic equations
and boundary conditions on these two types of flow surfaces and
also presented procedures to solve these equations. For over 20
years, this theory has been widely used. This practice indicates
that this two flow surface thoery is not only the calculation method
for three-dimensional flow in the turbine machinery, but also the
theoretical basis of the design method of such machinery. The cal-

culation and iteration processes of the two types of flow surfaces

11
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are not cnly the rrocedures to solve the three-dimensional flow
problem, but also those to design three-dimensional flow turbine
machinery.

Recently, with the development of transonic turbine machin-
ery, there has been a desperate need to calculate three-dimensional
flow with shock wave interruptions. In [2], it was pointed out,
after the establishment of the basic equations of three-dimen-
slonal flow and the integral form on the two kinds of flow surfaces
and the derivation of the relations of parameters in front and
behind the shock wave under various conditions, that in order to
solve the three-dimensiocnal flow problem we must calculate a two-
dimensional flow which is consistent with the three-dimensional
flow on each of the two surfaces, and carry out iterations between
the calculations of the two surfaces.

The establishment of this type of two-dimensional flow is a
fixed solution problem. Based on the results in [2], it cannot be
carried out on an assigned flow surface. It must extend the steady
flow surface model presented 1In [1] to the unsteady flow condition¥.
It transforms three-dimensional flow to the two types of flow sur-
surfaces which vary with time. This paper first briefly introduces
this unsteady surface and the geometric relations on it. It also
shows the relation between three-~dimensional flow surfaces at
every instance.

It 1s then followed, in the second anl third sectlions of this
paper, by the establishment of the basic equatlons on the two flow
surfaces which are consistent with the three-dimensional flow. They
are applicable in the solution of the unsteady flow and the cal-
culation of steady flow with shock waves.

¥
Comrade Huane Ray Tsien has pointed out that it 1s possible to
extend the steady flow surface to the unsteady flow surface.
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In the fourth section of thlis paper, the characteristic rela-
tions on the two types of surfaces are derived on the basis of
characteristic line theory. It presents the boundary conditlons
at upstream and downstream boundaries and on the flow surfaces
which are suitable for solving the problem of steady flow with shock
waves. The 1initial conditions can be gilven using the usual method.
Thus, this specific solution problem can be completely established.

Finally, in the fifth section of this paper we briefly des-
cribe the procedures used to solve the three-dimensional flow prob-
lem by iteration of calculations between the two types of unsteady
flow surfaces.

II. UNSTEADY FLOW SURFACE AND ITS GEOMETRIC RELATION

The combination of all the stream lines of all the points on
a curve in the flow field which is a stream line forms the spatial
flow surface.

In unsteady flow, the flow surface varies with time. Therefore,
in the four-dimensional space including time, the flow surface can
be expressed as:

S Jo 3f)*—o

Thus
3 3§ . _difqzzso_A
:-———dr-l— d + f +5¢
E 5)" j AT
The unit vector in the normal direction ﬁ(NP,N z’Nt)
satisfiles _ , ) ’ C , - i | |
' . X . ' ]
Ml g ik L L L L]
.2S __—.1-52.-_. -"L_}- R Sk . _L3> BEN b 195 <
3t" E f_;y ;3a'v :Uat ) ) (o +(U ‘x—)

Therefore, on the four-dimensional flow surface:
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On the other hand, there is a flow surface at any instance
in the space

St g gl=0

Its unit vector g(nr, N, nz) 1s a function of time t and it
satisfies

In the meantime, from the definition of the flow surface, for
every instance we have

which is
MW+ “ h=0

It should be pointed out that the corresponding components of
the three-dimensional and four-dimensional unit normal direction
vectors n and N are not equal, but there are the following rela-
tions:

P WO A i
_7- ~ -2 ---M._-n,- e M Pl (2)

With the above relations on the unsteady flow surface, we can
transform the basic equations of the non-viscous gas in a relative
coordinate system which is rotating at a constant angular velocity
as shown in [1]:
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separately to the two types of unsteady flow surface. It should
be pointed out that, as a closed series of equations, the equa-
tion of the state of the gas and other relations should be
included in addition to the above equations.

=grT (8)

oA
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1dR = faT I--,Q '. (9)

and

Because these algebraic equations maintain their forms on
the flow surface, they will not be described further in the follow-
ing sections.

ITII. BASIC EQUATIONS ON THE UNSTEADY FLOW SURFACE gl

Let us consider the unsteady flow surface formed by the stream

lines passing through a certain circle located upstream of the

Sty 3 )=

cascade.




Any arbitrary function q on it can be expressed as

54»_;(;/50 37 Jf”fr(f;, ,,j 5.1

By noting Equation (2), the partial derivatives of q on the

four-dimensional flow surface can be written as
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From these relatlons, Eqﬁatlon (3) can be rewritten as
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the continuity equation can be expressed as
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Similarly, Equations (U) (7) can be respectively expressed as
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If we are considering a steady flow, tbe f‘low surf‘ace does

In the above equations 5’—-—-" o ‘\4 = O
e 1€
basic equations

(40),

not vary with time.
Then these equations can be transformed into the

of the steady flow surface corresponding to Equations (34b)

9¢
b




(81), (3%a), (39b) and (39¢) in (1]. 1n other words, comparing
to the equations on the steady S1 flow surface, 1n the eouations
on the uq:reqov flow surface, besides the additional %Cﬁf%%s

and s:*;; in the expressions of ¢ and T respectivel& In the

energy equation, there 1s a similar J term.

We found that, different from the basic equation of transonic
flow with shock wave interruptions on the Sl flow surface used to
date, in Equations (12)-(16) b varies with time and appears in the

%g& term. Simultaneously, it shows the effect of unsteady
ractors In f and J. These are because of the use of the four-
dimensional steady flow surface model in the derivation of these

ejuations which are consistent with the spatial shock wave.

Considering the process of finding tor a complete numerical
solution, 1t is more accurate to carry out the calculation of the
difference format in the 1nvariance form during the interruption
due to the shock waves. We can transform Equations (12)-(16) into
the following divergent forms (or still called the invariance
forms)
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IV. BASIC EQUATION ON THE UNSTEADY FLOW SURFACE §2

Let us consider the unsteady flow surface formed by stream
lines passing through a radial line located upstream of the cascade.

0 f{ a,f)“‘O

Any arbitrary function g nn 1t can be expressed as

»}*,?(r p3t)=glr y(f’g 3.7
By taking Equation (2) into consideration, the partial deri-
vatives of q on the four-dimensional flow surface can be trans-

formed as:




From these relations, Equation (3) can be expressed as:
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the continuity equation can be rewritten as:
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Similarly, Equations (4)-(7) are as the following respectively:
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If we use I and S to express it, then the momentum equation
can be transformed into:
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Similarly to the situation on the S1 flow surface, in the
steady flow the above equations can be transformed into equations
(100), (98), (99a), (96a), (96b) and (96c) in [1], respectively.
The difference between the steady and unsteady S2 flow surfaces is
also the same as the situation for the Sl flow surface.

Equations (30)~(34) can be transformed into the divergent forms:
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It should be pointed out that the basic equaticns on the two
tynmes of unsteady flow surfaces are applicable in slowing the
unsteady flow as well as the steady flow with shock waves. The
difference in the two specific solution problems 1s 1in thelr
boundary conditions.

V. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

In the two previous sections, we have already established the
hyperbolic partial differential equations on the two types of
unsteady flow surfaces. The following is a presentation of the
corresponding boundary conditions and initial conditions.

In the calculation of the initial value-boundary value problems,
the parameters on the surfaces and at the upstream and downstream
boundaries are related to the parameters of the flow a moment before.
Thus, we should use the characteristic line theory [3] of the hyper-
bolic equations to derive the relative relations between the char-
acteristics in order to determine the boundary conditions [4,5,6,7].

(I) The boundary condition on the S, flow surface

At this time we can obtain the following relations:
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where u represents the angle between the outer normal line and the

z axis at a certain point on the boundary. Equations (#2) and (43)
are the flow characteristic relations while Equations (44) and (45)
correspond to the wave characteristic relations of gas propagating
at a speed -a and a, respectively.

For the upstream boundarv: Let us assume that ‘}/3,6'< Qa 3y then
only Equation (U44) can be used. Therefore, three parameters must
be given. The other parameters can be obtained from Equation (44).
Please notice that because uw = 7 at this time, and the three given
parameters (e.g., Pgs P, and gas flow angle) do not vary with time
and the parameters along the ! direction are homogeneous, Equa-

tion (44) can be drastically simplified.

For the downstream boundary: If the exit gas flow is subsonic
at this time, then Equations (42), (43) and (45) are usable rela-
tions. It still needs one more given parameter (such as the re-
verse pressure). Please note that u = 0 at this time and, the
above three equations can also be simplified. If the exit gas flow
i1s supersonic, then all four relations can be used. We can no
longer provide any given parameter.

1




For the blade surface: Equations (42), (43) and (45) are
all applicable.

The required boundary condition is that the flow
velocity Is tangential to the surface.

In addition, there 1is a periodic condition in the calculation

for the Sl flow surface. Its calculatlon can be carried out based

on the same method as that for the internal points. Cf course,

when the shock wave extends to the outside of the duct, whether
to choose the periodic condition of the suction surface in the
pressure surface requires a specific analysis.

(II) Boundary conditions on the 82 flow surface

The following relations can be obtained at thilis time:

~a 3¢ f-i)~——~/ 2.%3. 2) i (@9

e s S cE-Z) W
-.ﬂ/ L3 E/ ’l§bL_
O

Y L= Rea S (R )w/t S e

+{wa5,u)—£+(./+a s )—£+f4{ 3 +s..}u’9: + |

ﬁﬂlfdwﬁm/ *(‘l*"‘“‘/" 2 +ch -—'ém/} E’—"‘]
—50.(’ “")-Q»S‘AF usu.-&-fa-(r,, YD tw (:._ﬁ E"'b) ’ .';-(4,"9)

- -

.-{_ -r(wr a&»,bﬂ)s'e +(v$-o.cx/z)—£-ja(s,.;u-——4'-ﬂ§,,.__‘ﬁ - RN
. TSR

436{(»\/,5.../.-&)—1‘%(%&., -a.)—ﬁmux/x-—ih\gs l]-—— _ .;' - :

GjQ‘(C-——EJ—gl‘;C“/A.—Sa(F-; r)Sv-/wa’-( -i ) .(4‘7);




where u' represents the angle between the outer normal direction
of a point on the boundary and the z-axis. Equations (46) and
(47) are the flow characteristic equations, while Equations (48)
and (49) are the wave characteristic relations of the correspond-
ing gas propagating at a speed of -a and a, respectively.

For the upstream boundary: Let us assume }Y;d’<j12 , then
only Equation (48) can be used. Therefore, it needs three given
parameters. The other parameter can be obtained from Equation (48).
Pleass note that because pu' = m and the three given parameters
(e.g., Po’ 5 and M number) are time independent and all the para-
meters in the r direction are homogeneous, Equation (48) can be
greatly simplified.

For the downstream boundary: If the exit flow is subsonic at
this time, then Equations (46), (47) and (49) are the applicable
relations. It still requires one given parameter (such as the
reverse pressure or Vu r). Please note that at this time u' = 0,
the above three equations can also be greatly simplified. If the
exit gas flow is supersonic, then all four relations can all be
used. It cannot be provided with any given parameters.

For the up and down walls: Equations (46), (47) and (49) are
all applicable. The given boundary condition is that the flow
velocity 1is in the tangential direction to the wall surface.

(III). 1Initial conditions

It has already been proven [8] by the theory that the choice
of the initial conditions does not affect the final steady solu-
tion. However, if the selection of the initial conditions is very
improper, it may cause excessive oscillations and damge the stab-
111ty of the numerical solution. Therefore, the initial values
should be chosen so that there is no sudden variation for all the
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flow paramcters. In the meantime, the selection of the initial
values also affect the speed reaching a steady solution. Con-
sidering these factors, we cun choose the solution of the sub-
sonic flow or the parameter distribution which satisfies the
continuity equation on the geometric center line and appears to
be smooth elsewhere as the initial condition.

VI. THE PROCEDURES OF OBTAINING THE COMPLETE SOLUTION OF THREE-
DIMENSIONAL FLOW

We have already transformed the problem of the three-dimen-
sional flow with shock waves in turbine machinery into two families
of initial value~boundary value problems of hyperbolic equations
with three variables. It also presents the methods to determine
the initial and boundary conditions and then completely establishes
the specific solution problems for the two types of unsteady four-
dimensional flow surfaces. In order to obtain the solution of the
three-dimensional flow, besides the steady solutions of the initial
value-boundary values problems on the two families of flow surfaces,
we must carry out iteration between each other until it becomes
cunvergent.

In order to save the calculation time, we can use the time pro-
gressing and flow surface iteration method. For the calculation of
each step of Atj or several steps of I4tj, we carry out an iteration
between the two families of flow surfaces. This involves giving
the results of each flow surface calculation and the shape of each
four-dimensional flow surface (see Equation (1)) to the other flow
surface to carry out the calculation for the next time interval.

It repeats itself regardless of whether a steady solution is
reached in each calculation. When the steady solution 1s nearly
obtained, iteration between flow surfaces is required for every
time interval. Of course, it 1s not required to have a completely
steady solution. Finally, when steady solutions are obtained on
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all the flow surfaces, the final solution of the entire thrce-
dimensional flow is obtained.

Such procedures to obtain the solution clearly demonstrate
what has been vointed out in [2] that this method cannot be used
to solve a transonic flow with shock wave on a riven flow surface.
In other words, 1t 1s through the continuous adjustment of the
position and shape of the flow surface during the solution seeking
process which makes it possible to obtain the two dimensional shock
waves which are consistent with the spatial shock wave on the two
families of flow surfaces. The above procedures closely combine
the calculated shock wave on a single flow surface with the spatial
shock wave so that the time needed to obtain a steady solution can
be reduced.

VII CONCLUSIONS

On the basis of extending the three-dimensional flow surface
model to the four-dimensional unsteady flow surfaces, this paper
transformed the ordinary equations of the non-viscous adiabatic gas
flow in turbine machinery to two types of unsteady flow surfaces
Sl and S2 and then re-established the corresponding basic equations.
Comparing these equations with those for corresponding steady flow
surfaces, we found that, in addition to the presence of the partial
derivatives of the thickness of the flow sheet vs. time, the shape
of the four-dimensional flow surface has a certain contribution
toward ¢ (or c') and the "flow sheet force". 1In the energy equa-
tion, there is also a related term e(or €'). These equations are
applicable to the unsteady flow or the steady flow with shock waves,

It should be pointed out that the equations used to obtain
solutions to the transonic flow problem in the literature to date
on the flow surfaces (mainly revolving surfaces) are for time inde-
pendent flow surfaces. The thickness of the flow sheet is also not
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related to time. Therefore, the shock wave thus calculated is

not a part of the real shock wave in the space. Actually, the

basic equations used in the literature are not obtained from the
! basic equations used to solve for the spatial shock waves. They
are merely equations wlth the arbitrary addition of unsteady terms
to the steady flow equations. The result is that it failed to con-
sider the close relations between the two families of flow sur-
faces under the conditions that shock wave existed.

: Based on the characteristic curve theory, we derived the char-
acteristic relations between the two types of surfaces and further
determined the boundary conditions for the condition of steady

flow with shock waves. There is a certain degree of flexibility in

the selection of the initial conditions. The proper choice of the
initial condition can completely define the specific solution prob-
lem of transonic flow with shock wave on the two types of flow
surfaces.

Considering the close relation between the flow surfaces when
there are shock waves, in order to obtain the solution of the three-
dimensional flow, we can use the time progressing and flow surface
iterations method to save the calculation time. Thus, after the
difference format is chosen, we can obtain the solution numerically. :
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